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PREFACE

The research on this program was conducted by the Radar Applicatioms
Division, Radar and Instrumentation Laboratory, Engineering Experiment
Station, Georgia Lmstitute of Technology, Atlanta, Georgia with Mr. J. L.

Eaves serving as Project Director, and Mr. Donald J. Lewiaski serving as
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—

Principal Investigator. ~

Thiz report was prepared by the Engineering Experiment Station at
the Georgia Institute of Technology for the U.S. Air Force, Rome Air De-
fense Center, under Contract F330602-78-C-0120. The Technical Monitor
was Mr. William L. Simkins and Mr. J. T. Mastrangelo was the Contracting
Officer. For the purposes of internal control at Georgia Tech, the ef-
fort was designated Project A-2199. The final report summarizes the work
performad under this contract and gives recommendation for future work.

This report covers work which was performed from 15 June 1978 to 30 Sep-
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GLOSSARY

§%§ Svmbol Definicions
§§ % (e} Probability densitcy of e
§§ = Instantaneous clutter power (random variable)
gg . Xy Random parameter
§§ pl(e/al, Uny voe xn) Conditional density of 2 given random parameters
é (al, Gy vo :'.n)
%% pz(al, Agsy ooe an) Joint density of random parameters (al, Uy oo an)
ki a; amplitude of ith scatterer contributing to @
?i Phase of ith scatterer contributing to s
r Instantaneous clutter envelope (random variable)
k Ratio of square of mean of a to variance of s
(k) Gamma function
Io(x) Modified Bessel function of first kind-order zero
u Instantaneous mean of a8 (random variable)
N
uy Upper limit of u
uy Lower limit of u
!
a ;; = Inverse of dymamic range of u
y(b,x) Incomplete Gamma Function
El(x) Exponential Integral
. u Average Value of u
kz Ratio of square of mean of u to variance of u
P R, (¥) Modified Bessel function of second kind of order v
% pe(a®) False alarm probability
: z* Threshold value of 3
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GLOSSARY (continued)

Definitions
Upper limit of 10 log,ou
Lower limic of 10 loglou
Variance of 10 loglou

Median value of u
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I. INTRODUCTION

Radar analysis and svstem design are usually performed under the assump-
tions that radar clutter is stationary and nomogeneous; i.e., the probability
density and moments (statistics) of the clutter power are assumed to be con-
stant in time fer a single resolution cell (stationary) and constant in space
from resolution cell to resolution cell (homogeneous). In practice there are
many situations which do not satisfy chése conditions. For example, a single
clutter cell composed of a single type of vegetation which is moving in the
wind will have a first order demnsity function and moments which vary with
time and wind velocity. A radar viewing the ocean with sufficient resolution
to resolve a single wave will record time varying density functions and mean
values for a single resolution cell, depending on whether a wave is in the
cell or not. A single cell composed of several different features (grass,
trees, water, etc.) will have different statistics than a cell composed en-
tirely of a single feature. Even when a resolution cell is composed of a
single feature such as grass or trees, the variation in moisture content,
number of scatterers per unit area, etc. result in an uncertainty in the den-
sity function and statistics. The feature or mixture of features in a resolu-
tion cell may also vary from cell to cell affecting histograms and moments of
data gathered from a number of range and/or azimuth cells.

e examples delineated above indicate the need for a mathematical model
to characterize the nonstationary and nonhomogeneity of radar clutter. Im-
plied in the examples are practical radar problems such as cell averaging
CFAR design and performance evaluation, accurate prediction of first order

density functions of clutter power with attendant calculation of false alarm
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and decection probabilities, pradiction of spatial histograms, atc. In order

to se useful, the model should have a Iirm cheorarical bacis, de relactively

s:aple, and Se relatable to experimental data.
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The proposed technique for characterizing noastationarv and/or nonhomo-
Zeneous clutter is to treat the first order probability demsity as a function
of random parameters. Thus if Z is the instantaneous value of clutter power
and al, Ugy oo an are parameters, then the conditional densicy function of 2
is pl(aﬁal, az, cee cn). If the parameters are treated as random variables,

then the density function for % may be written as the N fold integral:

p(Z)::[)P .o pl(zﬂxl, Goy oo an) pz(al, Uy wee an) daldaz...dan (1)

where pz(al, Ays eee an) is the joint probability density of the random pa-
rameters.

Once the general faormulation as expressed by Equation (1) has been as-
sumed, the functional forms for Pl and PZ along with the type and number of
parameters 011, az, . an) must be determined. Several possibilities for Py
exist; however, the best choice appears to be the Nagakami density functionm,
which was developed to model the fading statistics for high frequency propa-

gation.

A. Chnice of Conditional Density

It is shown in [1] that that Nagakami density is an approximate, general

solution for the probability density function of the quantity:
W,
r= Iz : a, e (2)
~d "5
i

where a, and Y, are random variables. Note that Equation (2) can be viewed
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as the instantaneous envelope of clutter which is modeled as the sum of re~-

curns from indiviaial discrete scatterers having amplitudes a, and phases u,.
o

i

0f course, the inskantaneous clutter power & is just

[ §%)

The functional forms of the Nagakami demsity functions for p(r) and p(z)

are:

2
200k 2L e
p(r;k,u) = " 2 r20 (3)
['(k) (u)
ok &1 ef%?
n(askyu) = . 820 (4)

T(k) w*

2

where u is the mean or average value of 3 = r”, k is the inverse of the nor-

malized variance of a,

K = Lmean (a 2 (s)
Var (@) v
and [ denotes the gamma function
k-1 -t

F(k) = t e dt k>0
s

It is seen that Equation (4) has the general form of a gammd density function
where the parameter k is a positive numbex greater than zero. For the Naka-

gami density functions, k is restricted to the interval k,>-%. In either
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case Equations (3) and (4) can be viewed as families of curves with different
functional forms depending on the parameter k. For k = 1, Equations (3) and
(4) become Rayleigh and exponential densities, respectively. For k = %,
Equation (3) becomes a single sided Gaussian density.

As derived in [1}, Equation (4) corresponds to the Ricean density func-

tion

2
exp(-—25) emp(-25) 1 ( ‘2A>
p(a) = —= 29 2 )

20

forw2 k21, In Equation (6) 02 is the variance of the random quadrature

Gaussian components, A2 is the steady power component and I° is the modified

Bessel function of the first kind of order zero. For 12 k 3-%, Equation
(4) corresponds to the Q demsity function.
-2!(!:+.!g
R S T I A ™
P \%ﬂ? o ‘2 '8 o]

where
@ = 202(1 + p)

8 = 20%(1 - 0)

02 is the variance of the quadrature Gaussian components and p is the corre-
lation coefficient between the quadrature comfonents.

It is seen from the above discussion that the Gamma density function for
the instantaneous clutter power as given by Equation (4) is justified from

theoretical considerations and includes the exponertial and Ricean density
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functions which are frequently observed in experimental clutter data. The
Gamma or Nakagami density function also simplifies the analysis because it is
a Zunccion of only two parameters, the mean (u) and the inverse of the nor-
nalized variance (k). Treating the two parameters as random variables, the

axpression for the instantaneous power becomes

p(a) = // pl(a/u, k) pz(u, k) dudk (8)
_ka
l u
p(a) = // (k) P, (u, k) dudk (9)
F(k)(u) -

where pz(u,k) is the joint probability density of u and k and the integrals

are taken over the full ranges of allowable values of u and k.

B. Examples
The model for the first order density function as expressed by Equation

(9) is directly applicable to the short and long time variation in the scat-~
tering from a given cell. For example, suppése that it is desired to model
the terrain scattered return over an interval of wind velocities. It has
been observed that for certain vegetation the functional forms of pl(a/al,az)
and the mean of 3@ vary with the wind velocity. Thus if the Nakagami density
is-a good representation of pl(aﬂzl,az), then knowledge of k and u as a
function of wind velocity would determine pl(a/u,k) in Equation (9); the fre-
quency of vccurrence of the various wind velocities would determine pz(u,k).
Another single cell terrain example is the variation of the average power
level of returns from vegetation depending on its moisture content, density,

height, etc. In this case pl(s) is generally exponentiali (k = 1) and does

6




not change its functional form. Thus only the various values of the mean (u)
and their frequency of occurrence for various conditions would be raquired to
determine p(z) from Equation (9).

Similar examples of clutter variation on a single cell basis occur for
backscatter from the ocean surface. A low resolution radar will generally
observe a first order density function that is exponential but has a time
varying mean depending on sea state, wave height, wind velocity and directionm,
etc. This case would be treated in the same manner as the previously dis-
cussed case. High resolution radars recording returns from a single cell of
the sea have observed "spiky" returns, which are attributed to the backscat-
ter from individual waves, interleaved with returns which have an exponential
first order demsity. In this case the overall density for p(a) could be ap-

proximated by the discrete version of Equation (8):

p(a) = (1 - P) py(a/k;,u;) + P py(alky,u,) (10)

where P is the probability that a wave is in the cell, pl(e/kl,ul) is the

probability demsity of the clutter power when no wave is in the cell, and

pz(a/kz,uz) is the probability demsity of the clutter power when a wave is in
the cell.
The same techniques can be applied to histograms cbtained from samples
. taken from different range and/or azimuth cells. Assume that samples from N
independent cells are obtained and that the dgnsity associated with the nth

cell is p(a/un,kn). The overall histogram can then be written as

p(a) = T 3 p(s/u k) (1)
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wnen all celils having the same valiues of u and k are ccmbined, Equation (11)

becomes

o(d8) = 2 2 2(u,,k,) plalu,,k,) (12)
I 73 =3 L

<4

where P(ui,kﬁ) is the fractional aumber of cells with parameters u, and kj.
- s

In the limit as the values of u and &k become continuous, the sum indicated in

Equation (12) approaches the double integral im Equation (8).

c. Investigations
The application of the suggested theory and techniques should follow two

approaches: analytical and experimental. In the analytical area p(e) should
be obtained through Equation (9) for representative analytically tractable
forms of pz(u,k). Experimental data should be scrutinized to determine the
validity of the Nakagami density to approximate the conditional density

pl(aﬁul, Qs an) and to obtain pz(al, Qs ooe an) fo; various cases of intar-

est.
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ITI. INITIAL RESULTS

A.  Analysis

In order to obtain some meaningful results during the initial phase of
the program, it was decided to investigate the effects on the first order
density, p(a8), caused only by variations in the mean. Hence the parameter k
was assumed to be constant in Equation (9). The first order density can then

be written as

ke
x k k-1 u
p@ = [ L2t 2 5w (13)
o I W

where pz(u) is the probability density of the mean or average value. From
Equation (13) p(s) was determined for various represeantative functionms, pz(u).
Selected plots were made to show the general effects of pz(u) on p(a). The
pz(u) densities which were investigated included the Gamma, uniform, log uni-

form, and log normal.

1. Uniform

A frequently used analytical density function is the uniform densi-

ty

1
p,(u) = = U, 2u2u
2 uy = uy 2 1
(14)
pz(u) =0 u<u,u>u,

™ oot i ot
T I R TR At R AP
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Wnen Equation (13) is substituted into Equaction (13),
y L
e - Y - '
- 1 RO A )
p(a) = —=— = du (13)
2 1 uy T{k) (u)’
Through the change in variable t = %a_ , Equation (15) becomes
ka
!
K . k-2 -t
p(a) G, - ul) 0 t e ~ dn (16)
ks
%2
The Incomplete Gamma function, which is tabulated in several sources, is de-~
fined as
x
Y(a,x) = / e o7 g an
)

for a > 0. Thus Equation (16) can be written as

k ka ks
p(a) = - = [Y(k- 1, =) - vk=-1, -—] (18)

for k > 1. For the special case of k = 1, Equation (16) becomes

1 a
p(a) = —= 2~ de (19)
Y279

10
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In terms of the exponential integral:

o -t
El(x) = /; e dt (20)

i3

o
RV

Equation (19) can be expressed as

p(e) = 3;—3——‘1; [El (f;) - E, (-fz)} (21)

.

for k = 1.

s In order to determine the effects on p(a) of the spread in the mean u,
u

values of p(a) were calculated from Equation (21) for dynamic ranges 3
1

These values are listed in Table 1 and plotted in Figure

e

0l 1

of 1.11, 2, and 10.

b

v S—— T ——
T A NSRBI SRR TR T M

1. For comparison purposes, it was decided to plot the quantity uzp(a) ver-

sus the normalized variable-fL . Another, possibly more useful, plot would
2
show u p(=) versuS‘g-where u is the mean of u and is related to u, and u,
u
through the relationships:

T
Ern A T

N ALY Ay e W N R A TR - AW wiat A

-%; 2u

o u, =

33 2 1+a

Y

1 2au
1 1+a

Figure 1 and the data in Table I indicate that for small spreads in the

u ) 2
. mean (a large,';l =-§ small), p(a) approaches, the function & _¥2 . As the
1 u

spread in the mean u increases, the function of uzp(s) becomes? more concen-

trated near the origin. These results are to be expected, because as a ap=-

proaches 1.0, uy approaches u,y and Py approaches a delta function centered

11
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a .1 a—>90
Uzp(s) U,p(a) U,p(2)

Uzp(e)

ol «
|

1.054 1.386 2.558
.948 1.201 1.782 1.823
.853 1.041 1.304 1.223
.768 .903 0.992 .905
.690 .784 0.776 .702
.622 .681 0.621 .560
.560 .592 0.504 .454
.504 .515 0.415 .374
.450 449 0.345 .311
.408 .391 0.289 .260
.367 : .341 - 0.244 .219

1.1 - .330 .297 .206 .186

1.2 .297 .260 .176 .158

1.3 .267 .227 .1505 .135

1.4 .241 .199 ©L129 .116

1.5 .217 174 0.111 .100

2.0 .128 .099 0.054 .0489
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at u = u,. The resulting expression for n(a) is then

8
E - ——
4y

x
2(3) = [ = i(u-u,) du = i--'-——
Jo - s

-~

As a approaches zero, uy approaches zero and Equation 19 beccmes

Y L
2 3
p(a) = — / —— dt = — E,(=) (22)
u, iL t u, 1 4y
2
The expression in Equation (22) approaches infinity at fL = () and has the
2

largest negative slope for all values of a between zero and ome.

2. Gamma b

Since the Gamma density encompasses a3 relatively wide family of
functions, it is instructive to investigate the behavior of p(s) when pz(u)

is Gamma distributed. In this case

k, k,-1
(kz) 2 u 2

p,(u) = (23)

- kz
T(k,) (w)
where u is the mean of u and kz is the inverse of the normalized variance of

u. Using Equation (13) the expression for p(z) becomes
k,u

-}
k -+ 5
0" (ky) tat e du (24)
p(a) = T k-kz-l- 1

[0 My @ 2 N
o]
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By the change of variable ¥ = —é— , the integral in Equacion (24) can be writ-
ten as
1
k. u - - xakz
..(._g_?k:a_) k_kz _((' X_ )
- , a
o 0 du = (ky) e dy (25)
/ T TR K-k, + 1
o k~k2+l o) 2 2
u v X
(o]
Using the identity
7
® -+ AX) SV+1
/ e dx = === K (y)
w1 y
o X

in Equation (25) and substituting the resultant into Equation (24}, the ex-

pression for p(a) becomes

ktk ktk,-2

2 2
2 2 —
2(kk,) (a) ( ’Z&cza >
p(s) = : \/ (26)
kot Kk2- k 3
3

I'(k) T(k,) (w)

For the special case of k = 1, pl(z/u) is exponential,

kL kol
3 5
“ (2) (k) (2) P -
o - oo (/) :
kfﬂ &21 3
Tk @ 2

The density function given by Equation (27) is especially interesting because

it can be integrated in closed form to find the false alarm probability:

15




] ax
o (2%) = / o(3) da = 1 - [ o(a) da (28)

z*

re

Substituting Equation (27) into Equation (28)

ka+l a* .

2 ka~1
(2 2
I 1 @ ° da  (29)
4 k. +L
2
- 2
F(kz) (u) 0
4k.3
let &t = — then
u
q/Akza*
/ e
p_=1- : (:)k2 (e) dt (30)
£ 1 % -1
P(kz) (2)
Q
Making use of the idemtity
v v-1 . _WY oy
t K, (e)de =2 rv -x K,C0 (31)

Equation (30) becomes
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Thus for the special case of an exponential density for pl(e/u) and a Gamma
densiry with parameters u and kz for pz(u), the false alarm probgbility for a
given power threshold of #* is given by Equation (32).

Figure 2 is a plot of Equation (27) for values of k2 equal to 1.5 and 3.
Table 2 lists the values used in the plot. The behavior is similar to that
shown in Figure 1. As kz becomes large (kz = 3), the variance of u about its
mean U becomes small and p(z) approaches the exponential density. As kz be-
comes smaller, larger spread of the variable u about its mean, u p(z) attainms
a higher maximum at~§ = 0 and falls off more rapidly as a function of<§ for

u

small values of the argument. These observations are verified by the limit-

ing forms of kz. As k2 approaches infinity, pz(u) approaches §(u=-1u) and p(z)
]
approaches et . As k2 approaches the limiting value of'% in the Nakagami

ng—

[V§
density function,
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is interesting to note that an independent analysis of histograms ootained

from range swept radar data [2] indicated that p(s) had the form

-5 Vs
p(a) = S—E—_;:_ (24)
A&

which is the same form as Equation (33).

3. Log Uniform
Radar backscatter data is usually obtained in the form of K log 3

instead of direct measurement of the quantity s. Thus it is useful to inves-

tigate density functions for pz(u) which are distributed in terms of log u.

Consider the density function

p(Y) = y2 2 y 2 yl (35

¥ =7

whera y = 10 loglo u. The density for u then has the form

1 - u, > u>u, (36)
u ln';a
1l

Pz(u) =

) 71
10 10
where u, = (10)™ and u, = (10)~". The density function given by Equation

(36) is the log uniform density fumction.

When the log uniform density funection for pz(u) is substituted into

Equation (13)

20
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p(a) = f e " du (37)
o TR @ D
1 1
For the case k = 1
-2
u
2 u
p(a) =—-—17—-f S du (38)
2 u
1n (T) uq . :

Equation (38) can be readily integrated and it is found that

.2 =
u u
e 2 - e 1
p(a) = - (39)
2 ln D
1

Equation (39) is plotted in Figure 3 from the computed values shown in
Table 3. The parameter a is defined in the same manner as that used for uni-
form density: u; = au,. It is seen that the behavior of p(z) for log uni-
form pz(u) is similar to that for uniform and Gamma p, (u). For small spreads
of pz(u), a=1.0, p(a) approaches the exponeﬁtial density. Large spreads in
pz(u), a £ 0, causes uzp(e) to attain large peaks at -f— = 0 and to fall off

2

rapidly as A increases for small values of —~ .
Y2 Y2
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* 2 a=0.9 a=0.5 a=0.1
v, Uyp(e) U,p(e) U,p(2)
0 1.055 1.44 3.91
.1 .949 1.24 2.33
.2 .854 1.07 1.48
.3 .768 .923 1.00
A .691 797 .708
5 .622 .689 .521
n .6 .560 " .595 .395
’ .7 .504 .515 .308
.8 .453 446 L2644
.9 .408 .387 .196
1.0 .367 .335 .160
1.5 .217 .167 .0646
3.0 .045 .0228 .0072

Table III-3. Uzp(s) As Function of E]g_ For Exponential pl(s/u)
2
and Log Uniform pz(u).
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VR Log Normal
Another commonly used density is the log normal density, whereas
Thus for

the name implies, the log of the variable is normally distributad.

v = 10 loglou,

p(y) = S
V2w cy

where y and g, are the mean and variance of y, respectively. The density

function for u is then

— 2
- (lnu --zluua
2¢
py(u) w2 — ©2u20 (41)
u Vy2r' o
wr ize 1nu and 02 are the mean and variance of lnu, respectively. From Equa=-
tion (13) the density function for the clutter power becomes
(lou - Tom)?
o0 - b - 2 2
k k=1 u o
p(e) = () & "o 2 du (42)
kel
Q VZTY e l(k) u
which reduces to
24
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u lC
p(e) = €= 5 du (43)

for k = 1. Thus far attempts to obtain closed form expressions for the in-
tegrals in Equations (42) and (43) have not been successful, although series
representations for the two equations have been derived.

Nakagami {1] states without oroof that the density function for t = 10

logloa, when u is log normal and pl(a/u) is a Gamma density is given by the

expression
p D = F(T, k, ?o) s(t, k, ?o) 44)
where
F(n k, T ) = f—T(-(%lf exp [ Zk(:i’)' -ke -—————2(:%)]

m

exp [
m2 +4 602 kQ o+ 4 9, kQ

s(tk, ‘to) =

and
T = 10 loglou

T, = E(10 loglou) = mean value of 10 loglou
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3 ° = var e of 10 1
o iance of 10 g o u

(=)

Q =
a = 20 10g 2 = 3.586

= T1al0
Transforming to the variable z = (10)lo = a 10 , it is found that

(2) = =10 101ns \

P2} * S1nio0 Pr \Talo
1 1 ')

(_k_a.f - ﬁ_’_’. k23~<l“":—)2

“a/ e n exp [ 2 ]

2 =
2(1+ke u—-—)
a (43)

ar(k)\/umzf-
a

whexe
02 = variance of lnu
U, median value of u = elnu
Inu = mean value of Inu
For the special case of k = 1,
-2 ot (1-2?
Y u
a ] [ m ]
2(1 + g2 2y
p(a) = 2 (46)
2 =
Ua lL+g° —

u
i3

Equacion (46) is plotted in Figure 4 as a function of 2 for g% = 0.5 and 1.5.

The quantity plotted is u p(s). The values used in the plots are given in

26
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Table 4. As the spread in u becomes small (07 is small) Equation (45) ap-
proaches the function

- ke
). "
) ®
p(e) = me O (47)
Since
o ¢
- 2 Inu 2
u=z3a =43 e
) >
U approaches u_ as % becomes small and
- k2
() - °
lim 3
oo PO T “o
For k= 1,
-]
iim . u
g=+o p(e) = — (49)
Lu

Thus as ¢ + 0, p(2) is approximately equal to pl(e/u) evaluated at u = U as

can be seen from Equation (13). +his result agrees with the plot for small

27
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1.65
1.61
1.31
1.06
.866
.718
.602
.510
.435
374
.323
.281
.246
.215
.190
.168
.149
.0853
.0319
.0133
.00583
.000141

2.63x10°

.131
.110
0934
.0797
.0682
.0329
.00876
.00254

.000773
6

Table III-4. up(#) As Functiom of-% For Ex. erential pl(a/u)

and Log Normal pz(u).
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3 (37 = 0.3). Tor larger spreads in u (C~ large), Equaticn (48) indicates

that at the point a = 0,

)
A
— a2
~ -
-

2(0) = 35— = S— (50)
a u

Thus u p(z) at z = 0 becomes large as 02 becomes large. This trend is veri-
fied by the plot for 02 = 1.5. It is seen :hat the general behavior of p(a)
for log normal u is similar to that for the other pz(u) densities discussed
2arlier.

Nakagami (1] indicates that when pz(u) is log normal and cz is large,
p(a) approaches a log normal density when pl(z/u) is a Gasma density. For
k --% he states that p(s) is log normal when 9, > 10 which corresponds to
g > 2.3; for k= 1, p(s) 1is said to be log unormal for g, > 7.0 or ¢ > 1.61.
The log normal density has been proposed for terrain at low grazing angles

[31.

B. Data Evaluation

A limited amount of experimental data was visually inspected to obtain
the appropriate form of pz(u). It appears that the variation in the average
value of the backscatter from trees at frequencies of 9.5 GHz, 16.5 GHz, 35
GHz, and 95 GHz may be approximated by either log umiform or truncated log
normal densities. Extensive reduction of experimental data for the feature
types of interest at the desired frequencies, depression angles, time of
year, etc. would be required teo properly determine the correct functional

form of py(u).
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IV. SUMMARY

The need for a statistical model to describe nonstationary and nonhomo-
geneous radar clutter returns is discussed in Section I. Examples are given
which indicate that when the variability and uncertaianty of clutter are
taken into account, nonstationaricy and nonhomogeneity of the returns are
the rules instead of the exceptions.

In Section II the general and specific approaches to the problem are
outlined. The general approach is to model the {irst order density function
of the instantaneous power of the clutter return as the expected value of a

conditional density which is a function of random parzmeters. The expected

T A

value is taken over the full ranges of all the random parameters. If n

BRI

parameters are involved, then the conditional density as a function of each

S

TR et Nos A e A Parme

of the parameters must be known along with the joint density of the param-

2,

4
8
&

Nk
N

A

eters. An n fold integral is then recuired to obtain the first order densi-
ty function of the instantaneous clutter power.

It is shown that the Nakagami or Gamma. density is a good choice for the
conditional density function for several reasons. It has valid theoretical
and practical justifications and iz a function of only two parameiers: the
mean (u) and the inverse of the normalized variance (k). The Nakagami den-
sity imcludes the exponential and Ricean demsities as special cases; its
particular functional form depends on the value of k.

The analysis in Section III considers the case where the conditional
density has the Nakagami form and only the mean u is a random variable; the
parameter k is assumed to be a comnstant. Although somewhat restrictive,

variation only in the mean does occur in practice and it also simplifies
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ths analysis. Four separate density functions for che mean are considered:
wnilorm, Gamma, log uniform, and log normal. General expressions are de-
vivad aud selectaed plots are made for the first order density of the clucrter
dower (@) for each distribution of the mean.

Yhen the mean is uniformly distributed, p(#2) can be expressed, see
Equation (18), as the difference batween two incomplete Gamma functions for
k > 1. For k = 1, exponential density for p(e/u), p(a) ls given by Equation
(21) as tha difference between two exponential integrals.

For 3 mean having a Gamma density, the general expression for p(a) as
indicated by Equation (26) is a function of u (the average value of u) and
kz (che inverse of the normalized variance of u); it also contains as a fac-
tor 2 modified Bessel function of the second kind of order kz-k. When k=1,
p(a) can be integrated in closed form to obtain the false alarm probability,
P,, which is a function of k,, U and the threshold level a*.

& log uniform density for u when k = 1 results in an expression for
p(s), Equation (39), which is proportional to the difference between two aex-
ponentials and inversely proporticnal to w».. The eiponencials are functions
of tho upper and lower limits of u.

When the mean has a log normal density the integral expression for p(a)
is difficult to evaluate in closed form. Some results which are stated with-
out proof in (1] were used to obtain an expression for p(s), Equation (45),
which ia a complicated function of k, Uy (the mediap value of u) and 02
(the variance of lau).

For the case where the conditional density pl(a/u) is exponential, the
genexil behavior of p(e) for all of the assumed functional forms of pz(u)

give similar rasults. When the spread in thc mean is swall, the density for
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p(a) is approximately equal to pl(s/u) evaluated at u = u. As the spread in
u becomes large, the function u p(2) becomes highly concentrated at 8 = 0.
Preliminary visual inspection of a limited amount of experimental data
on the backscatter from trees seems to indicate that the density for the
mean clutter power, pz(u), can be approximated by log uniform or truncated
log normal densities. In order to obtain reliable estimates of pz(u), his-
tograms of experimental data on the average backscatter for the terrains of
interest at the desired frequencies, depression angles, polarizatiomns, etc.

are required.
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V. FUTURE WORK

Future efforts on the characterization of nonstationary clutter should
include theoretical and experumental investigations. Several analyvtical
problems are suggestsd based on the effort to date. First of all the re-
sults given ia this report for a mean which is log normally distributed are
based on an equation in a technical paper that is stated without proof.
Since clutter with log normal mean has been measured experimentally, an ad-
ditional effort should be made to obtain a rigorous derivation. Another ap-
propriate theoretical topic would be to perform an. analysis for the parame-~
ter k in the Nakagami density function similar to that reported here for
the parameter u. The approach would be to assume various standard demsities
for pz\k) and integrate the expression pl(a/k)pz(k) to obtain the probabil-
ity density function for the instantaneous clutter power p{(a). Other theo-
retical topics would be suggested from the analysis of experimental data.
For example, if the data indicate that the zssumed models for pl(a/u) and
pz(u) are inadequate, then additiopzi derivgtions ¢imilar to those reported
here would be required.

In the area of experimental data analysis the task would include the
generation of histograms to detzrmine for various terrains the conditional
density and the densities fer the mean and normalized variance. The best
fit of a. Nakagami deusity to the measured conditional density would be made
to determine the adequacy of the present model of pl(a/u,k). 1f the Naka-
gami density is found to be valid, then temporal or spatial histograms of
the data would be compared to p(a) as predicted through the use of pl(a/u,k)

and pz(u,k) to determine the validity of the overall model.
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